

VistAWeb

Version 16.1
(Patch WEBV*1*26)

Technical Manual

November 2012

Product Development
Office of Information and Technology

Department of Veterans Affairs

ii VistAWeb Technical Manual November 2012

 Version 16.1

Revision History

Date Patch Page(s) Change(s) Project
Manager

Technical Writer

September
2012

WEBV*1*26
VistAWeb 16.1

Appendix H Removed information about the
floating header.

Pam O’Reilly Nick Metrokotsas

September
2012

WEBV*1*26
VistAWeb 16.1

Appendix H Added information about the
floating header.

Pam O’Reilly Nick Metrokotsas

July 2012 WEBV*1*25
VistAWeb 16

Throughout Updated section on new features
in Version 16.

Pam O’Reilly Nick Metrokotsas

12/11 WEBV*1*23/24 Various Various edits from Steve Monson Richard Muse J. Green

9/11 WEBV*1*23/24 Various Various changes from Steve
Monson

Richard Muse J. Green

6/11 WEBV*1*23 Various Various changes from Steve
Monson

Richard Muse J. Green

6/10 WEBV*1*20 Various Various changes from Steve
Monson

Jack Schram J. Green

5/10 WEBV*1*18 Various Various changes from Steve
Monson

Richard Muse J. Green

1/6/10 WEBV*1*19 Various Various changes from Steve
Monson

E. Ridley J. Green

9/1/09 WEBV*1*17

Various Various changes from Steve
Monson and Robert Troha

E. Ridley J. Green

12/23/08 WEBV*1*16 Appendix D Added SYSINFO Reports E. Ridley J. Green

10/3/08 WEBV*1*13 Various Revised some URL links, corrected
some descriptions, corrected a
script, added index creation
scripts.

E. Ridley J. Green

12/04/07 WebV*1*11 Various changes from Steve
Monson

S. Madsen A. Fretz

11/28/2007 WebV*1*11 Removed Setup script for move to
Installation Guide.

S. Madsen A. Fretz

10/24/07 n/a 17-22 VistAWeb scripts. Scott Madsen
(from Steve

Monson)

A. Fretz

10/18/07 n/a 16-17 Added section BSE Code Update. Scott Madsen
(from Steve

Monson)

A. Fretz

November 2012 VistAWeb Technical Manual iii

 Version 16.1

Date Patch Page(s) Change(s) Project
Manager

Technical Writer

February
2007

n/a p.1 Added note about internal VA
network links.

S. Madsen M. Kelsey

December
2006

WEBV*1*8
VistAWeb 6.0

n/a
p. 1

p. 6 and p. 7

p. 7

Various minor text edits.
Minor change to Introduction to
better reflect functionality and
access to VistAWeb.
Added mention of access to
VistAWeb through the Remote
Data Available button in CPRS.
Added note about requirement for
updating Verify codes by
standalone users.

S. Madsen M. Kelsey

7/11/06 WEBV*1*7 2, 4, 5, 15

App A

App B

Removed references to
VistAWebDocs application.
Added two new scripts to App. A.
Removed appendix B, which
makes the former appendix C now
B.

S. Madsen M. Kelsey

3/20/06 WEBV*1*5 15, App B The Using VistAWeb User
Management Web Application
section was modified to reflect a
new method of requesting Special
User access. Some new file names
(CAPRI files, for example) have
been added to Appendix B;
testSecurityKey.java filename was
deleted.

S. Madsen M. Kelsey

5/05/05 n/a All Replaced URLs and made format
changes.

G. Smith M. Kelsey

2/25/05 n/a All Reviewed for release

2/18/05 n/a 2, 6, & 28 Removed URL references (VISN
CIO will provide)

2/10/05 n/a 14, 16, 21, &
26

Removed reference to Special
User Script

1/31/05 Informational
Patch number
OR*3*230

All Initial User Manual for use with
beta test version

iv VistAWeb Technical Manual November 2012

 Version 16.1

Table of Contents
REVISION HISTORY ..II

TABLE OF CONTENTS ... IV

INTRODUCTION ..6

ASSUMPTIONS...7

SYSTEM REQUIREMENTS ..9

HARDWARE ...9
SOFTWARE ...9

Windows Server 2003 ..9
Windows Server 2008 ..9

VISTAWEB OVERVIEW ...11

LANGUAGE SPECIFICATIONS ..11
USING VISTAWEB ...11

Standalone Application Process ...11
CPRS-Spawned VistAWeb Process...12

VISTAWEB UNDER THE HOOD..15
ASP.NET / Code-Behind Example: HsAdhoc.aspx ..15

RELEASING PROJECT UPDATES TO PRODUCTION ..17
OTHER VISTAWEB MANNERISMS ...17
SPECIAL USER ACCESS WEB APPLICATION ...18

Process ..18
VISTA CONNECTIONS ..19

Compatibility With Patch XWB*1.1*35 ..19
Broker Security Enhancement..20

SQL SERVER DATABASE OVERVIEW ..23

APPENDIX A: DATABASE SCHEMA ..24

LOG CREATION SCRIPT..24
LOG INDEX CREATION SCRIPTS ..24
CPRSUSERS CREATION SCRIPT ...25
CPRSUSERS INDEX CREATION SCRIPT ...25
SPECIALUSERS CREATION SCRIPT ...25
SPECIALUSERS INDEX CREATION SCRIPT ...25
LOGGERTABLE CREATION SCRIPT ..25
BIGGERLOGGER CREATION SCRIPT ..26
USERAUTH CREATION SCRIPT ...26
USERAUTH INDEX CREATION SCRIPT ...26

APPENDIX B: VISTAWEB CODE SAMPLES ..27

SAMPLE HTM (COUNTDOWN.HTM) ...27
SAMPLE ASPX PAGE (TEXTRECORDPAGE.ASPX) ...28
SAMPLE CODE-BEHIND PAGE (TEXTRECORDPAGE.ASPX.CS) ..29
APPENDIX C: SECURITY GUIDE ..31

APPENDIX D: CONFIGURABLE ITEMS ..32

APPENDIX E: SYSTEM INFORMATION REPORTS..36

APPENDIX F: RPCS USED BY VISTAWEB ..37

November 2012 VistAWeb Technical Manual v

 Version 16.1

APPENDIX G: CONFIGURING A BUILD TO WORK ON A COMPUTER THAT DOESN’T

HAVE VISUAL STUDIO 2010 ...40

List of Figures

Figure 1: VistAWeb Application Tiers Interaction .. 7
Figure 2: Web Service Extension Settings in Windows Server 2003 ... 10
Figure 3: MaxUserPort and TcpTimedWaitDelay Registry Settings in Windows 2003 Server 10
Figure 4: VistAWeb Login Process Flow .. 14
Figure 5: Configuration of VWContext .. 21

6 VistAWeb Technical Manual November 2012

 Version 16.1

Introduction

Veterans Health Information Systems and Technology Architecture (VistA) VistAWeb is an

intranet web application used to review remote patient information found in VistA, the Bi-

Directional Health Information Exchange (BHIE) system, the Health Data Repository II (HDR

II) databases, and the Nationwide Health Information Network (NwHIN, see

http://healthit.hhs.gov/portal/server.pt?open=512&mode=2&cached=true&objID=1142).

To a large extent, VistAWeb mirrors the reports behavior of the Computerized Patient Record

System (CPRS) and Remote Data View (RDV). However, by permitting a more robust and

timely retrieval of remote-site patient data, VistAWeb is also an enhancement to CPRS/RDV.

There are three ways to access VistAWeb. VistAWeb can be made available by adding it to

the CPRS Tools Menu, and it can be selected as the default method of retrieving data from

the VistaWeb button in CPRS. These two methods are referred to as CPRS-spawned versions

of VistAWeb. They are compliant with the Health Level 7 (HL7) Clinical Context Object

Workgroup (CCOW) standards and therefore maintain context with the patient selected in

CPRS. As a third option, VistAWeb can be accessed in a standalone mode by entering the

uniform resource locator (URL) link (https://vistaweb.med.va.gov/) in the Internet Explorer

address bar.

Note: Some links found in this technical manual go to sites or pages found on the VA

intranet. These sites or pages are not accessible from outside the VA network.

The standalone version of VistAWeb is connected to neither CPRS nor the clinical context

management application. Standalone VistAWeb serves an important function for users who

have been granted special access to multiple sites, such as for National Programs, Veterans

Administration (VA) researchers, and others. VistAWeb was also made available more

broadly, though temporarily, to assist clinical staff with the retrieval of patient information

from the sites affected by damage caused by hurricane Katrina.

The design of VistAWeb uses n-tier architectural principles, where VistAWeb represents the

presentation tier (ASP.Net Web Page). The business process tier is represented by multiple

components that VistAWeb uses to access the data tier. Business process components include

such elements as code-behind pages (a programming feature of Microsoft.NET

programming), Medical Domain Objects (MDO), and a collection of other reusable

components. The code-behind pages (.cs files), which are directly interwoven within the

VistAWeb application, will be covered in this document, while other reusable components

(.dll files) such as MDO will be discussed in other technical documents. The data tier

comprises multiple data sources, such as VistA, XML, and numerous SQL-compliant

relational databases (e.g., Oracle, Microsoft SQL Server, and Microsoft Access). Although

some code-behind pages do interact with an SQL-compliant database and some XML

sources, the rest of the data tier interactions take place in reusable components such as MDO.

Figure 1 depicts, at a high level, the interaction of the different application tiers.

http://healthit.hhs.gov/portal/server.pt?open=512&mode=2&cached=true&objID=1142
https://vistaweb.med.va.gov/

November 2012 VistAWeb Technical Manual 7

 Version 16.1

Figure 1: VistAWeb Application Tiers Interaction

ASP.NET

Web Page

C# Code -

Behind

MDO &

Other Reusable

Components

VistA SQLXML HL7 DICOM

Presentation Tier

Business Process Tier

Data Tier

ASP.NET

Web Page

C# Code-

Behind

MDO &

Other Reusable

Components

VistA SQLXML HL7 DICOM

Presentation Tier

Business Process Tier

Data Tier

Assumptions

System administrators, specifically web administrators, are the intended audience of this

technical manual. Readers are assumed to possess the technical knowledge of programming

principles using languages such as Java, XML, C#, HTML, and SQL. Additionally, users of

this manual should also possess the technical knowledge of how to configure and interact

with application servers and are also assumed to have already implemented the necessary

security hardening guidelines. See the Office of Cyber and Information Security link below

for information pertaining to security requirements:

https://vaww.infoprotection.va.gov/nsoc/default.aspx

For additional information on technologies and principles used in the development and

implementation of VistAWeb, the following sources are recommended reading:

ASP.NET: http://www.asp.net

C#: http://msdn.microsoft.com/en-us/vstudio/hh388566

C# Design Patterns: http://msdn.microsoft.com/en-us/magazine/cc301852.aspx

.NET Application Development / n-tier: http://msdn.microsoft.com/en-

us/library/ms973279.aspx

SQL: http://www.w3schools.com/sql/default.asp

World Wide Web Consortium: http://www.w3.org/

Spring Framework: http://www.springframework.net/

https://vaww.infoprotection.va.gov/nsoc/default.aspx
http://www.asp.net/
http://msdn.microsoft.com/en-us/vstudio/hh388566
http://msdn.microsoft.com/en-us/magazine/cc301852.aspx
http://msdn.microsoft.com/en-us/library/ms973279.aspx
http://msdn.microsoft.com/en-us/library/ms973279.aspx
http://www.w3schools.com/sql/default.asp
http://www.w3.org/
http://www.springframework.net/

8 VistAWeb Technical Manual November 2012

 Version 16.1

Log4net (similar to Log4j): http://logging.apache.org/log4net/index.html (see also Chainsaw

at http://logging.apache.org/chainsaw/index.html)

The remainder of this document is divided into the following sections:

 System Requirements

 VistAWeb Overview

 SQL Server Database Overview

 Appendixes.

http://logging.apache.org/log4net/index.html
http://logging.apache.org/chainsaw/index.html

November 2012 VistAWeb Technical Manual 9

 Version 16.1

System Requirements

Hardware

The servers that run VistAWeb are configured at the Austin Information Technology Center

(AITC) in Austin, TX. The exact details of the web and SQL servers can found in the

following links:

Web Server:

http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=vaausnvwweb200

SQL Server:

http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=VAAUSNVWSQL2

00

Software

VistAWeb is capable of running on either Windows Server 2003 or Windows Server 2008. Each

configuration is listed below.

Windows Server 2003

Windows Server 2003 Enterprise configured with the role of Application Server

Internet Information Services (IIS) 6.0 (installed by default as part of the Application Server role)

.NET Framework 2.0

FTP services and an FTP folder (to be used as a staging location for updates to VistAWeb)

Web Extension Services set to allow ASP.NET extensions (see Figure 2)

Registry entries in Windows 2003 Server that allow more ephemeral ports (see Figure 3)

SQL Server 2000 or higher (The database does not need to run on the same server as the web

application.)

Windows Server 2008

Windows Server 2008 R2 Enterprise configured with the role of Web Server

IIS 7.5 (installed by default as part of the Web Server role)

.NET Framework 2.0 (installed by default in Windows 2008)

SQL Server 2005 or higher (the database does not need to run on the same server as the web

application.)

http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=vaausnvwweb200
http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=VAAUSNVWSQL200
http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=VAAUSNVWSQL200

10 VistAWeb Technical Manual November 2012

 Version 16.1

Figure 2: Web Service Extension Settings in Windows Server 2003

Figure 3: MaxUserPort and TcpTimedWaitDelay Registry Settings in Windows 2003 Server

For instructions on installing and configuring VistAWeb and the related intranet application,

see the VistAWeb Installation Guide.

November 2012 VistAWeb Technical Manual 11

 Version 16.1

VistAWeb Overview

VistAWeb’s web pages are a mix of basic HTML pages and .NET Active Server Pages

(ASP.NET), noted by the respective extensions of .htm (or .html) and .aspx. HTM and

HTML pages are standalone pages. However, for the ASP.NET pages, there are actually two

pages to be aware of:

aspx pages are written in HTML and ASP.NET tags;

aspx.cs pages represent the “code-behind” pages that power the aspx pages.

Note: A code sample is provided in Appendix B, which contains a sample code from

each of the three—htm, aspx, aspx.cs.

Language Specifications

The languages used in VistAWeb (and also VistAWeb Context) are:

ASP.NET

HTML, including Cascading Style Sheets (CSS)

XML

C#

JavaScript

Using VistAWeb

VistAWeb is an intranet application that may be accessed as a standalone application, or

spawned from the CPRS tools menu or the CPRS VistAWeb button. VistAWeb’s patient data

menu is very similar to the report menu found in the CPRS Reports tab. Users may wish to use

either the standalone application or the CPRS-spawned version from the CPRS Tools menu.

VistAWeb users must have an active existing CPRS account with the necessary CPRS contexts

enabled. The two methods for using VistAWeb are documented below. For more

comprehensive documentation on the use of VistAWeb, please read the VistAWeb User

Manual.

Standalone Application Process

1. User launches the web browser application (e.g., Internet Explorer).

2. User enters the URL of VistAWeb (https://vistaweb.med.va.gov) in the address bar and

presses the Enter key or clicks the mouse cursor on the “Go” button adjacent to the

address bar.

3. VistAWeb loads into the user’s web browser.

4. User must select a login site link on the left of the display screen by clicking the mouse

cursor on the desired site where the user has access.

5. User is provided with the VistA Login screen.

6. User enters his or her CPRS access/verify codes in the spaces provided and presses the

Enter key or clicks the mouse cursor on the Login button.

https://vistaweb.med.va.gov/

12 VistAWeb Technical Manual November 2012

 Version 16.1

7. Once the user’s account is authenticated against CPRS, the user’s remote site patient

selection permissions are verified from a SQL Server database. The permissible sites for

the user to choose patients from are then displayed.

8. User must select a site from which to select a patient if selecting a site other than his or

her default site.

9. User is presented a Patient Selection screen for entering the desired patient name (last

name, comma, first name, and middle initial), portion of name, first initial of last name

and last 4 digits of Social Security number, similar to patient selection in CPRS. User

then clicks the mouse cursor on the “Find” button (or presses the Enter key) to find a list

of patients matching the criteria. With the appropriate patient highlighted, user then clicks

on OK (or presses the Enter key).

10. The Sites and Notices screen is displayed, which identifies the sites where the patient has

been seen.

11. User can look at different elements of the patient record by selecting a desired report

from the list of available reports on the left side of the displayed screen.

By default, a VistAWeb user is permitted to select patients that are in the local VistA system

where the user logs in. VistAWeb will retrieve data for these patients from all sites where

the patients have visited. Some users (researchers or referral coordinators, for example) may

need to select patients that are not in the local VistA. These users must be granted Special

User access. Special User access can be granted for one site in addition to the login site,

several sites, an entire VISN, or all sites nationally. The process for requesting special user

permission is documented in the VistAWeb User Manual.

Note that regardless of which site is selected for a patient (local or remote), once a patient has

been selected, VistAWeb uses the Master Patient Index (MPI) at the selected site to

determine at what other sites the patient has remote data and establishes the connections to

each of those sites to retrieve data requested by the user.

Note: Users who regularly only use the standalone version of VistAWeb will be required

to update their verify codes periodically, just as they would if logging into CPRS.

When this happens, the login screen will display the message, “User must enter a

new Verify code at this time.”

CPRS-Spawned VistAWeb Process

1. User opens CPRS.

2. User enters his or her CPRS access/verify code.

3. User selects a patient.

4. User launches VistAWeb from the Tools menu or the CPRS VistAWeb button

5. VistAWeb opens in a web browser window (e.g., Internet Explorer) and one of two

things occurs:

 If the proper Sentillion Vergence controls are installed, VistAWeb will

synchronize and display the CPRS-selected patient if the session of CPRS that

launched VistAWeb is in context. The user can now look at different elements of

the patient record by selecting the desired report from the reports menu on the left

side of the user’s display screen.

November 2012 VistAWeb Technical Manual 13

 Version 16.1

 If the components are not installed, or if the CPRS session is not in context, then

the user is warned that either the components are not installed, or that CPRS lacks

proper context synchronization, and the user is forced to close VistAWeb. After

either or both of these situations are rectified, the user can start the process anew

and display the patient records using VistAWeb, as in number 1 above.

Note: Unlike the standalone version of VistAWeb, the CPRS- spawned version does not

permit the user to change patients from within VistAWeb. VistAWeb is CCOW

compliant and, therefore, maintains context with the patient who was selected in

CPRS. Users must have the Sentillion Vergence Locator application loaded on the

desktp and must maintain patient synchronization (context) to use the CPRS-

spawned VistAWeb process.

Figure 4 shows the process flow for the login and use scenarios discussed above.

14 VistAWeb Technical Manual November 2012

 Version 16.1

Figure 4: VistAWeb Login Process Flow

November 2012 VistAWeb Technical Manual 15

 Version 16.1

VistAWeb Under the Hood

Like all applications developed using ASP, all data source communications and most complex

tasks are performed on the server side rather than the client side. The client (i.e., the VistAWeb

user) only sees the end result of what the server does. What the client sees is standard HTML

and client-side scripting generated by the server. So even though a common ASP.NET tag of

<asp:textbox> might exist in an aspx page on the server, what is shown in the client’s browser

is <input type=text>. More importantly, the client never sees or knows how the data is

collected or from where it is collected.

VistAWeb communicates with VistA and other data sources using a collection of methods.

All data source communication methods are done through code-behind pages and through

reusable components. Both the code-behind pages (.cs files) and the reusable components

(.dll files) represent the business process tier. To provide better context and clarity, let’s

examine a code-behind page and a web page in greater detail.

ASP.NET / Code-Behind Example: HsAdhoc.aspx

HsAdhoc.aspx is a basic ASP.NET page, but the coding techniques are the same for most

ASP.NET pages in VistAWeb. Note that only the unique elements of ASP.NET will be

explained here.

<%@ Page language="c#" Inherits="EMR.HsAdhoc" CodeFile="HsAdhoc.aspx.cs"

%>

Every .aspx page must identify which code-behind page it must link to. In this case, it is

Insurance.aspx.cs. It is possible to use C# programming in-line the same way that VBScript

and JavaScript can be used in regular ASP (i.e., pre-.NET) pages, but VistAWeb only uses

C# in code-behind pages.

<form id="Form2" method="post" runat="server">

 <!-- Adhoc Table

***-->

 <table border="0">

 <tr> <!-- Row 2-->

 <td></td>

 <td>Select Adhoc Reports:<asp:label id="lblAdhoc"

runat="server"></asp:label></td>

 <td></td>

 <td>Component Selection(s)<asp:label id="lblCompSel"

runat="server"></asp:label></td>

 <td></td>

 <td><asp:label id="lblHdrName" runat="server"

Enabled="False">Header Name:</asp:label></td>

 </tr>

 <tr> <!-- Row 3-->

 <td></td>

 <td vAlign="top" rowSpan="6"><asp:listbox id="lstAdhocRpts"

Width="250px" Runat="server" Height="180px"

onselectedindexchanged="lstAdhocRpts_SelectedIndexChanged"></asp:listbox></td>

 <td></td>

 <td vAlign="top" rowSpan="6"><asp:listbox id="lstSelected"

tabIndex="4" Width="250px" Runat="server" Height="180px" AutoPostBack="True"

onselectedindexchanged="lstSelected_SelectedIndexChanged"></asp:listbox></td>

 <td></td>

16 VistAWeb Technical Manual November 2012

 Version 16.1

 <td><asp:textbox id="txtHdr" tabIndex="7" Width="150"

Runat="server" AutoPostBack="True" ontextchanged="txtHdr_TextChanged"></asp:textbox></td>

 </tr>

 <tr> <!-- Row 4-->

 <td></td>

 <td><asp:button id="btnAdd" tabIndex="1" runat="server"

Width="100%" Enabled="False" Text=">" CssClass="myButton"

 CausesValidation="False"

onclick="btnAdd_Click"></asp:button></td>

 <td><asp:button id="btnRptUp" tabIndex="5" runat="server"

Width="100%" Enabled="False" Text="Up"

 CssClass="myButton"

onclick="btnRptUp_Click"></asp:button></td>

 <td colSpan="1"><asp:label id="lblOccLimit" Runat="server"

Enabled="False">Occurrence Limit:</asp:label></td>

 <td><asp:label id="lblTimeLimit" Runat="server"

Enabled="False">Time Limit:</asp:label></td>

 </tr>

The ASP.NET web controls, when read by the server, are rendered as HTML tags when

transmitted to the client. For example, the <asp:listbox> tag will be rendered as a <select> tag.

The <asp:button> tag will be rendered as an<input type=”button”...>. Note that ASP.NET web

controls can be read by the C# code-behind pages before the page is rendered, while the

regular HTML tags cannot. This is because all ASP.NET and C# code is interpreted first, and

HTML controls are interpreted last. In fact, HTML controls cannot be read by the C# code,

because the controls do not exist prior to the page being loaded. The code-behind is executed

prior to the .aspx page.

At the beginning of every code-behind page, there are usually several lines of code that

identify which additional class libraries should be included and referenced. Including these

libraries permits the programmer to interact with the routines within the libraries. For

example, the System.Web.UI.WebControls Library allows the programmer to interact with

the methods and properties of the ASP.NET controls and receive programming assistance

from the IDE syntax checker.

A major difference between ASP and ASP.NET pages is that ASP.NET pages are self-

submitting, meaning that they do not submit their data to other ASP.NET pages. In the pre-

.NET days, ASP pages usually submitted their data to a different ASP page, with the

different page being identified in the HTML tag <form onaction=“secondasppage.asp”

method=“post”>. In ASP.NET, the onaction event of the form tag is ignored, and clicking a

submit button will submit the form’s data to itself. With this paradigm shift, additional

programming elements were needed for the code-behinds to prevent certain pitfalls. For

example, say the Insurance.aspx page is being visited for the first time by the user. Certain

values are queried and displayed on the page. Without a conditional element being included

in the Page_Load event, any reload would continually reload the original values, thereby

wiping out any alterations to the page made by the user (assuming any were allowed). This

conditional element sample is identified below:

private string summaryTitle;

private string summaryID;

private string siteId;

protected ArrayList uComponents = new ArrayList();

protected int compCtr;

protected void Page_Load(object sender, System.EventArgs e)

November 2012 VistAWeb Technical Manual 17

 Version 16.1

{

 base.pageLoad(sender, e);

 summaryTitle = Request.QueryString["alt"];

 summaryID = Request.QueryString["app"];

 siteId = Request.QueryString["siteId"];

 MDO.MultiSiteDAO dao = (MDO.MultiSiteDAO)Session[Constants.MULTI_SITE_DAO];

 if (!Page.IsPostBack)

 {

 Session["AHComponents"] = uComponents;

 MDO.AHComponent[] ahComps = dao.getAdhocComponents(siteId);

 for (int i=0; i<ahComps.Length; i++)

 {

 ListItem item = new

ListItem(ahComps[i].getComponentName(),ahComps[i].getAHString());

 lstAdhocRpts.Items.Add(item);

 }

 }

 if (lstAdhocRpts.Items.Count>0)

 {

 btnAdd.Enabled = true;

 }

 uComponents = (ArrayList)Session["AHComponents"];

 compCtr = 0;

 if (uComponents.Count > 0)

 {

 compCtr = int.Parse(((MDO.AHComponent)uComponents[uComponents.Count-

1]).getCompCtr());

 }

}

Having the !Page.IsPostBack condition ensures that the setup code is performed only once

rather than each time the page is reposted to itself.

Releasing Project Updates to Production

Whenever there is a change to the VistAWeb EMR project or code files (C# files), the

project must be recompiled. This project recompilation produces a .dll file. This .dll file,

unlike the pre-.NET days of ASP and middle-tier development, does not require a component

object model (COM) wrapper, but is instead COM-less. Bottom line—this means faster

application development, faster deployment, and less application server downtime. Unlike

the pre-.NET days when the IIS services would have to be stopped to release .dll updates, in

.NET, the IIS services do not need to be stopped, because the COM-less .dll is not locked and

can be easily overwritten.

Despite this feature, VistAWeb is always released in a complete zip file to ensure that all

components are version compatible with each other, and that they have all passed SQA

testing as a unit.

Other VistAWeb Mannerisms

CCOW—VistAWeb is Clinical Context Object Workgroup (CCOW) compliant and

therefore maintains context with the patient who was selected in CPRS. VistAWeb

retrieves data for that patient from all sites where the patient has visited. Users will not be

able to select a new patient from within VistAWeb, but may return to CPRS to select a

new patient. This new patient will then be viewable in VistAWeb automatically.

18 VistAWeb Technical Manual November 2012

 Version 16.1

Activity Logging—VistAWeb tracks the user’s movements through the application in a SQL

Server database table.

Error Logging / Email—whenever an error occurs with the application, it is automatically

logged by VistAWeb to the log4net framework. The log4net framework can be

configured to save log entries to a file, the SQL Server, emailed, etc. VistAWeb comes

configured to store all log messages to the SQL Server database.

Multithreaded Site Connections—when a user identifies what patient data he/she wants to

see, MDO creates a separate connection thread to each site where the patient has data and

retrieves the data asynchronously rather than iteratively.

No Caching—pages that present patient data are prevented from being cached in the client-

side Temporary Internet Files folder, thereby preventing users from retrieving patient

data after the VistAWeb session has terminated.

Session Timeout—the VistAWeb browser session times out after 15 minutes of inactivity. A

two-minute warning window will pop up, allowing the user the option to terminate the

session early or continue working, the latter choice thereby resetting the timeout period.

Spring Context—much of VistAWeb is configured using Spring framework configuration

files

Special User Access Web Application

The Special User Access application is an intranet application that is used by select

individuals to grant VistAWeb users the ability to select patients from remote sites, and is

built in to VistAWeb. Note that access to this application is restricted to only a handful of

individuals who have been identified to have the proper credentials necessary to assign

remote site permissions to VistAWeb users.

Process

Once a VistAWeb user has submitted a request to be able to select patients from one or more

remote sites, the associated authorizer will use the application to grant the approved site

permissions. The authorizer must provide a reason for each entry; the reasons are

typically provided by the VistAWeb user to the local Information Security Officer (ISO)

when the user makes the initial request.

The data is saved to a SQL server database table.

The associated authorizer notifies the user and the local ISO of the authorized permissions.

Like the VistAWeb project, the Special User Access project is governed by the same

development methodology.

November 2012 VistAWeb Technical Manual 19

 Version 16.1

VistA Connections

Compatibility With Patch XWB*1.1*35

As of version 12, VistAWeb is compatible with patch XWB*1.1*35 – Non Call-back Broker.

This patch allows clients to connect to the VistA broker using a single port/connection,

instead of the 2-port/connection method (AKA the “call-back broker”) in the old style.

VistAWeb attempts all VistA connections using the newer style defined by patch

XWB*1.1*35. If that method fails, it falls-back to the older style of connection.

The consequence of connecting to VistA with the new style is that the client connection

could be disconnected by the VistA account after a certain period of inactivity. To remedy

this, VistAWeb calls the “broker info” Remote Procedure Call (RPC) on the VistA system

when it firsts connects to get that system’s timeout value. Then, VistAWeb sets up an

execution thread that runs the “I’m Here” RPC for that VistA connection during inactive

times. In the VistAWeb documentation we call this the “ping thread”.

VistAWeb runs the “ping thread” in one-half the time indicated as the VistA’s timeout value.

For example: If the Salt Lake system indicated 180 seconds as the connection timeout,

VistAWeb runs the “I’m Here” RPC every 90 seconds if there is no RPC activity on that

connection.

Note: The “ping thread” mechanism is only used for the newer XWB*1.1*35 connections.

The older connection method remains unchanged.

The use of the “ping thread” mechanism allows the user to remain connected to the needed

VistA systems until their work is finished, without having to reconnect serially to each VistA

system every time a report is requested.

Version 13 introduced a “ping thread” timeout. Since VistAWeb is a web app, sometimes

users stop using it without VistAWeb being able to detect this (for example; simply clicking

the close “X” on the browser window, or the network connection is interrupted, etc). In

order for VistA connections to be able to close properly, the “ping thread” timeout is set for

20 minutes, which is 5 minutes longer than the default timeout value for VistAWeb. After

that time, the “ping thread” is terminated, and the VistA connection is allowed to be closed

by VistA after its timeout period has elapsed. That way, user’s VistA connections will

eventually be closed and the port reclaimed for reuse on the server.

Note: All “ping threads” are terminated and all connections are closed if VistAWeb does

detect the user is done (for example, by clicking the “Logoff” button).

20 VistAWeb Technical Manual November 2012

 Version 16.1

The Appendix D section of this document describes parameters that can be adjusted for the

new connection method, how to disable the “ping thread”, or how to force VistAWeb to use

the new connection method or the old connection method for all VistA connections.

Broker Security Enhancement

As of version 7, VistAWeb takes advantage of the VistA Broker Security Enhancement (BSE)

to set up and authenticate users on “remote” VistA systems. A “remote” VistA system is a

VistA account that the user does not have access/verify credentials to access. The Broker

Security Enhancement is a mechanism to provide user access to these other systems to provide

patient data, which is more secure than the old method of granting access.

In order for this to work, the VistAWeb team has created a web application called the

VistAWeb Context service that allows “remote” VistA systems to callback to VistAWeb to

validate the remote authorization request. (See the documentation on the BSE from the

Common Services group at http://tspr.vista.med.va.gov/warboard/anotebk.asp?proj=994 to

see how this functionality works.)

First-Time-Only Setup

1. Back up the SQL Server database. This step cannot be skipped!

2. Create a login in SQL Server to allow only inserting into the LoggerTable table.

3. Create a web application for the new BSE context service; name it VWContext.

Configure the web application to use 10.2.48.10 and unsecured port 12181 (see Figure 5)

o Specify a new MIME type for this application for “*.do” items

o This web application will run as an HTTP application (and not HTTPS).

http://tspr.vista.med.va.gov/warboard/anotebk.asp?proj=994

November 2012 VistAWeb Technical Manual 21

 Version 16.1

Figure 5: Configuration of VWContext

4. Run the SQL script entitled “Update CPRS” against the SQL database; this will add a

column to one of the tables and populate the column with the data.

Steps to Update in v16.1 in Staging and SQA - Every Time

1. Remove prior versions of VW and vwContext.

2. Unzip vistaweb_<version>.<date>.zip into the target VW folder.

3. Unzip vistawebcontext_<version>.<date>.zip into the target folder created in step 3 above.

4. Change the <vistaweb>/resources/xml/log4net.xml file to add the login ID and password

from step 2 above. Strip out the “Provider=SQLOLEDB” from the connection string.

5. Change the <vistawebcontext>/resources/xml/log4net.xml to add the login ID and

password from step 2. Strip out the “Provider=SQLOLEDB” from the connection string.

6. Change the <vistaweb>/web.config file.

a. Change the vistaConnectionFactory.security phrase to “MY NAME IS SQA01”.

b. Change userActivity.connectionString to specify the SQA SQL Server database

(EMR_SQA for SQA and EMR for UAT).

c. Change version.useFullVersion to “true”.

d. Change allowViewLog to “true”.

e. Change excludeChemHem to “false”.

f. Change the <vistawebcontext>/web.config file to specify the SQA SQL Server

database (set it to the same value as what’s in VI.b).

g. Start the vistawebcontext web application, and then start the VistAWeb application.

22 VistAWeb Technical Manual November 2012

 Version 16.1

h. Change permissions to image\temp file to allow Network Service to “Write” in

VistAWeb.

i. Copy vhasites.xml file from existing instance into staging.

j. Test.

November 2012 VistAWeb Technical Manual 23

 Version 16.1

SQL Server Database Overview

VistAWeb needs the following tables in order to run and will interact with these tables

constantly. The EMR database contains the following tables:

CprsUsers—CPRS-spawned VistAWeb checks this table to see if the CPRS user has logged

into the spawned version before. If not, then the user is asked to log into VistAWeb.

Once this is done one time, the user’s information is added to the CPRSUsers table.

Future CPRS-spawned VistAWeb browsers will not ask the user to log in if their

information is found in this table.

SpecialUsers—retains the remote site permissions assigned to users.

Log—tracks the movements of users within the VistAWeb application.

Request—tracks remote sites to which users want special user access.

LoggerTable – used by the log4net framework used by VistAWeb to store application errors

and other internal logging.

BiggerLogger – used by the log4net framework used by VistAWeb to store application

messages too big for the LoggerTable.

UserAuth – used by the Broker Security Enhancement code in VistAWeb and the associated

VistAWeb Context service to allow “remote” VistA systems to authenticate back to

VistAWeb.

24 VistAWeb Technical Manual November 2012

 Version 16.1

Appendix A: Database Schema

 Database Name: EMR

 Database Tables:

 Log

 CprsUsers

 SpecialUser

 LoggerTable

 BiggerLogger

 UserAuth

 Views:

 LogDesc.

Log Creation Script

CREATE TABLE [dbo].[Log] (

 [id] [numeric](19, 0) IDENTITY (1, 1) NOT NULL ,

 [requestDate] [datetime] NULL ,

 [remoteAddr] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [userId] [numeric](19, 0) NULL ,

 [userName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [userSitecode] [varchar] (6) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [userSitename] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [requestPage] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [requestSitecode] [varchar] (6) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [requestSitename] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [patientID] [numeric](19, 0) NULL ,

 [patientName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [patientSensitivity] [tinyint] NULL ,

 [message] [varchar] (4000) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

)

Log Index Creation Scripts

ALTER TABLE [dbo].[Log] ADD CONSTRAINT [PK_Log] PRIMARY KEY CLUSTERED

(

 [id] ASC

)WITH (PAD_INDEX = OFF,

 STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF,

 IGNORE_DUP_KEY = OFF,

 ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = ON)

 ON [PRIMARY]

CREATE NONCLUSTERED INDEX [requestDate] ON [dbo].[Log]

(

 [requestDate] ASC

)WITH (PAD_INDEX = OFF,

 STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF,

 IGNORE_DUP_KEY = OFF,

 DROP_EXISTING = OFF,

November 2012 VistAWeb Technical Manual 25

 Version 16.1

 ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = ON)

ON [PRIMARY]

CprsUsers Creation Script

CREATE TABLE [dbo].[CprsUsers] (

 [UserID] [numeric](19, 0) IDENTITY(1,1) NOT NULL ,

 [Sitecode] [varchar] (3) NOT NULL ,

 [SiteName] [varchar] (80) ,

 [DUZ] [varchar] (50) NOT NULL ,

 [SSN] [varchar] (9) NOT NULL ,

 [Name] [varchar] (100) NOT NULL ,

 [activeDate] [datetime] NULL ,

 [inactiveDate] [datetime] NULL

)

CprsUsers Index Creation Script

ALTER TABLE [dbo].[CprsUsers] ADD CONSTRAINT [PK_CprsUsers] PRIMARY KEY CLUSTERED

(

 [UserID] ASC

)WITH (PAD_INDEX = OFF,

STATISTICS_NORECOMPUTE = OFF,

SORT_IN_TEMPDB = OFF,

IGNORE_DUP_KEY = OFF,

ONLINE = OFF,

ALLOW_ROW_LOCKS = ON,

ALLOW_PAGE_LOCKS = ON)

 ON [PRIMARY]

SpecialUsers Creation Script

CREATE TABLE [dbo].[SpecialUsers] (

 [RecID] [numeric](19, 0) IDENTITY (1, 1) NOT NULL ,

 [UserSiteId] [varchar] (3) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [DUZ] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [UserName] [varchar] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [Site] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [Reason] [varchar] (200) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

 [ActiveDate] [datetime] NULL ,

 [DeactiveDate] [datetime] NULL

)

SpecialUsers Index Creation Script

ALTER TABLE [dbo].[SpecialUsers] ADD CONSTRAINT [PK_SpecialUsers] PRIMARY KEY

CLUSTERED

(

 [RecID] ASC

)WITH (PAD_INDEX = OFF,

 STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF,

 IGNORE_DUP_KEY = OFF,

 ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = ON)

 ON [PRIMARY]

LoggerTable Creation Script

26 VistAWeb Technical Manual November 2012

 Version 16.1

CREATE TABLE [dbo].[LoggerTable] (

 [Id] [int] IDENTITY (1, 1) NOT NULL,

 [Date] [datetime] NOT NULL,

 [Thread] [varchar] (255) NOT NULL,

 [Level] [varchar] (50) NOT NULL,

 [Logger] [varchar] (255) NOT NULL,

 [Message] [varchar] (4000) NOT NULL,

 [Exception] [varchar] (2000) NULL

)

BiggerLogger Creation Script

CREATE TABLE [dbo].[BiggerLogger](

 [Id] [int] IDENTITY(1,1) NOT NULL,

 [Date] [datetime] NOT NULL,

 [Thread] [varchar](255) NOT NULL,

 [Level] [varchar](50) NOT NULL,

 [Logger] [varchar](255) NOT NULL,

 [Message] [text] NULL,

 [Exception] [varchar](2000) NULL

) ON [DEFAULT] TEXTIMAGE_ON [DEFAULT]

UserAuth Creation Script

CREATE TABLE [dbo].[UserAuth] (

 [sessionId] [varchar] (80) NOT NULL,

 [sessionType] [varchar] (20) NOT NULL,

 [effectiveDate] [datetime] NOT NULL,

 [inactiveDate] [datetime],

 [status] [varchar] (10),

 [name] [varchar] (100) NOT NULL,

 [userId] [numeric](19, 0) NOT NULL

)

UserAuth Index Creation Script

CREATE NONCLUSTERED INDEX [UserAuth_sessionUser] ON [dbo].[UserAuth]

(

 [sessionId] ASC,

 [userId] ASC

)WITH (PAD_INDEX = OFF,

 STATISTICS_NORECOMPUTE = OFF,

 SORT_IN_TEMPDB = OFF,

 IGNORE_DUP_KEY = OFF,

 DROP_EXISTING = OFF,

 ONLINE = OFF,

 ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = ON)

 ON [PRIMARY]

November 2012 VistAWeb Technical Manual 27

 Version 16.1

Appendix B: VistAWeb Code Samples

Sample HTM (Countdown.htm)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

 <HEAD>

 <title>Countdown</title>

 <link rel="stylesheet" type="text/css"

href="resources/css/main.css"></link>

 <script LANGUAGE="JavaScript">

var now = new Date();

var event = new Date();

event.setMinutes(event.getMinutes() + 2);

var seconds = (event - now) / 1000;

var showSeconds;

ID=window.setTimeout("update();", 1000);

function update() {

 now = new Date();

 seconds = (event - now) / 1000;

 seconds = Math.round(seconds);

 if (seconds > 59) {

 showSeconds = seconds - 60;

 } else {

 showSeconds = seconds;

 document.Countdown.minutes.value = 0;

 }

 document.Countdown.seconds.value = showSeconds;

 if (seconds == 0)

 returnToCaller("Close");

 else

 ID=window.setTimeout("update();",1000);

}

function returnToCaller(option) {

 window.returnValue = option;

 window.close();

}

 </script>

 <style>

 body

 {

 margin-left: 20px;

 }

 </style>

 </HEAD>

 <body MS_POSITIONING="GridLayout">

 <table border="0" width="100%">

 <tr>

 <td></td>

 <td align="right"><IMG src="resources/images/Timeout.gif" alt="Timeout

image"></td>

 </tr>

 </table>

 <hr color="#cc0000">

 <p>

 <form name="Countdown" method="post">

 VistaWeb has not been used for 15 minutes. It will close in the

indicated time

28 VistAWeb Technical Manual November 2012

 Version 16.1

 unless you click the "Don't Close" button...

 <p>

 Time Remaining Until VistaWeb Closes:

 <TABLE BORDER="5" CELLSPACING="5" CELLPADDING="0">

 <TR>

 <TD ALIGN="middle" WIDTH="23%">Mins:</TD>

 <TD ALIGN="middle" WIDTH="23%">Secs:</TD>

 </TR>

 <TR>

 <TD ALIGN="middle"><INPUT type="Text" name="minutes" size="2"

value="1"></TD>

 <TD ALIGN="middle"><INPUT type="Text" name="seconds" size="2"></TD>

 </TR>

 </TABLE>

 <input type="button" class="myButton"

onclick="returnToCaller('Continue')" value="Don't close VistaWeb">

 <input type="button" class="myButton" onclick="returnToCaller('Close')"

value="Close VistaWeb">

 </form>

 </body>

</HTML>

Sample ASPX Page (TextRecordPage.aspx)
<%@ Page language="c#" Inherits="EMR.TextRecordPage" CodeFile="TextRecordPage.aspx.cs" %>

<%@ Register TagPrefix="uc1" TagName="PrintLinkComponent" Src="PrintLinkComponent.ascx" %>

<%@ Register TagPrefix="uc1" TagName="ParamsAndQueryControl" Src="ParamsAndQueryControl.ascx" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

 <HEAD>

 <title></title>

 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

 <meta name="CODE_LANGUAGE" Content="C#">

 <meta name="vs_defaultClientScript" content="JavaScript">

 <meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">

 <link href="resources/css/main.css" type="text/css" rel="stylesheet">

 <script language="javascript"

src="resources/scripts/js/functions_lib.js"></script>

 <script language="javascript" src="resources/scripts/js/JSExtras.js"></script>

 <script language="javascript" src="resources/scripts/js/dialogWindow.js"

type="text/javascript"></script>

 </HEAD>

 <body onload="init('TextRpt', '');setBehavior();hideNavigationPopupWarning()">

 <form id="textRecordPageForm" method="post" runat="server">

 <uc1:ParamsAndQueryControl id="paramsAndQueryControl"

runat="server"></uc1:ParamsAndQueryControl>

 <asp:TextBox ID="ImageFileName" Runat="server"

CssClass="hideImageText"></asp:TextBox>

 <asp:TextBox ID="ImageFileAlt" Runat="server"

CssClass="hideImageText"></asp:TextBox>

 <uc1:PrintLinkComponent id="printLinkComponent"

runat="server"></uc1:PrintLinkComponent>

 </form>

 <form name="TimeoutForm" action="Timedout.aspx" target="_top">

 </form>

 </body>

</HTML>

November 2012 VistAWeb Technical Manual 29

 Version 16.1

Sample Code-Behind Page (TextRecordPage.aspx.cs)

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Reflection;

using System.Security;

using gov.va.med.vistaweb.util;

using gov.va.med.vistaweb.ui;

namespace EMR

{

 public partial class TextRecordPage : AbstractFlatReport {

 protected void Page_Load(object sender, System.EventArgs e) {

 base.pageLoad(sender, e);

 propertyName = Request.QueryString["app"];

 ImageFileAlt.Text = Request.QueryString["alt"];

 ImageFileName.Text = propertyName;

 if (Request.QueryString["dr"]==null ||

!"y".Equals(Request.QueryString["dr"].ToLower())) {

 if (ParamAndQueryComponent!=null) ParamAndQueryComponent.Visible =

false;

 }

 }

 protected override IPropertyParameters getQueryParameters() {

 if (ParamAndQueryComponent!=null && !ParamAndQueryComponent.Visible) {

 return null;

 }

 return base.getQueryParameters();

 }

 protected override gov.va.med.vistaweb.ui.IParamAndQueryComponent

ParamAndQueryComponent {

 get { return paramsAndQueryControl; }

 }

 protected override gov.va.med.vistaweb.ui.IPrintLinkComponent PrintLinkComponent {

 get { return printLinkComponent; }

 }

 protected override gov.va.med.vistaweb.ui.IWaitOrCancelComponent

WaitOrCancelComponent {

 get { return null; }

 }

 #region Web Form Designer generated code

 override protected void OnInit(EventArgs e)

 {

 //

 // CODEGEN: This call is required by the ASP.NET Web Form Designer.

 //

 InitializeComponent();

 base.OnInit(e);

 }

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

30 VistAWeb Technical Manual November 2012

 Version 16.1

 {

 this.PreRender += new System.EventHandler(this.preRender);

 }

 #endregion

 }

}

November 2012 VistAWeb Technical Manual 31

 Version 16.1

Appendix C: Security Guide

Security for VistAWeb is handled at the local VistA level and at the national VistAWeb

server level. A BSE patch enables broker security, while a VistAWeb patch identifies the

VistA site as a legitimate user of the national VistAWeb application.

When users log into their VistA/CPRS accounts, they are first authenticated by VistA/CPRS

through the use of a valid access and verify code pair. Then when the users launch

VistAWeb, VistAWeb verifies that the user is an authenticated user by sending an

authentication message to the VistA system via the broker. In the standalone mode of

operation, the users direct their Internet Explorer browsers to the VistAWeb Home Page.

When they select and log into their local site or one of the sites to which they have been

granted access through the Special User Access program, VistA user verification occurs and

then the VistAWeb site authentication and notification process takes place.

Apart from having installed the necessary patches for BSE and VistAWeb, nothing is

required from the local Information Resource Management (IRM) staff or ISO.

32 VistAWeb Technical Manual November 2012

 Version 16.1

Appendix D: Configurable Items

The use of the Spring Framework enables a number of items to be configurable in

VistAWeb. They are listed below in no particular order. If you change any of these

parameters, they will only take effect after a restart of the web server (the IIS service).

1. VistA Connection Parameters:

In the resources/contexts/connectionContext.xml file there are several

parameters that can be adjusted.

Note: Version 12 introduced a new VistA connection class called VistAConnection2,

which is compatible with Broker Patch XWB*1.1*35 (see the Compatibility With Patch

XWB*1.1*35 section of this document). Version 12 also added a VistA connection

fallback façade, which allows a specified VistA connection class to be tried, and then to

fallback to a different connection class if the first one fails. Thus, all VistA connections

in version 12 are set up to attempt to connect with the VistaConnection2 class first, then

the system resorts to the VistaConnection class if that fails.

a. Connection Try Limit – limits how many times a connection failure will be

tolerated before throwing an error. Change the connectionTryLimit in

abstractVistaConnection for the affect all VistA connections, or change

it in abstractVistaConnection1 to only affect VistaConnection

class instances.

b. Initial Timeout – how many milliseconds to wait for the TCP connection open to

complete successfully (the TCP/IP SYN – SYN/ACK handshake sequence).

Changing initialTimeout in abstractVistaConnection1 changes

how the VistaConnection class behaves and changing initialTimeout

in abstractVistaConnection2 changes how the VistaConnection2

class behaves.

c. Timeout – how long to wait for a response from VistA on an RPC call before

throwing an error. Changing timeout in abstractVistaConnection1

changes how the VistaConnection class behaves and changing timeout in

abstractVistaConnection2 changes how the VistaConnection2

class behaves.

d. “Pinging” – refers to the VistaConnection2 class’s behavior in regards to calling

the “XWB IM HERE” RPC. This RPC is only used for VistaConnection2

connections. In the abstractVistaConnection2 entry, you can change the

following items:
i. IsUsingLocalPingInterval

1. If set to “true” will try to get the VistA connection timeout value

from a call to the “XWB GET BROKER INFO” RPC. If the RPC

succeeds, then the “XWB IM HERE” RPC will be called in half

the time indicated if there is no activity on the connection. For

example: if the “XWB GET BROKER INFO” RPC returns 180,

November 2012 VistAWeb Technical Manual 33

 Version 16.1

then the connection will call the “XWB IM HERE” RPC every 90

seconds if no other RPC has been called during that time. If the

“XWB GET BROKER INFO” RPC fails, then the value in

DefaultPingIntervalSecs will be used as the interval.

2. If set to “false”, will always use the interval in
DefaultPingIntervalSecs

ii. DefaultPingIntervalSecs – the interval to wait for connection

activity before the “XWB IM HERE” RPC is called.

NOTE: If IsUsingLocalPingInterval is set to “false” and

DefaultPingIntervalSecs set to 0 or less, the “XWB IM HERE” RPC will never be

used or called.

iii. MaxPingMinutes – the number of minutes that “pinging” will function

before quitting. It is always important to set this to a value or some

abandoned VistA connections may never get closed if “pinging” is used!

e. Socket Linger – the wait time for a connection being closed. Change the

socketLinger to the number of seconds the execution thread will wait for a

connection being closed. Normally this is set to 0.

2. VistA Behavior

In the resources/contexts/daoContext.xml file there are several parameters

that can be adjusted:

a. VistA Connection – which VistA connection object to use. If you wish to disable

the fallback façade and use either VistaConnection (older style broker

connections) or VistaConnection2 (newer style broker connections) for all VistA

connections, you can change the vistaConnection value in

protocol_VISTA to “vistaConnection” or “vistaConnection2”,

respectively.

b. Site ID Ignore List – configuration parameters to ignore certain entries from the

MPI. The following properties are applied in the order given here:

i. SiteIdIgnoreList – which station numbers to ignore. If the value

begins with an “at” symbol (@), then anything that follows that symbol

will be matched as a regular expression and ignored if matched.

Otherwise, entries with that exact station number will be ignored.

ii. remoteExcludeTypes – the type of MPI entries to ignore. Currently

VistAWeb ignores entries with type “other”.

iii. remoteKeepPatterns – a list station numbers, where if matched, will

be kept no matter what the prior 2 sections has excluded. The station

numbers are matched using a starting match. For example, if this field

34 VistAWeb Technical Manual November 2012

 Version 16.1

specified “200N”, any station number starting with “200N” would be

matched and kept (such as 200NKP, 200NDOD, etc).

c. Check Details Message – the message that gets displayed in the grid for certain

reports if there is an error.

d. MPI Error Tollerance – error tolerance can be turned off or on, and if turned on,

you can specify what errors to ignore

i. IsMpiErrorTolerant – set “true” to ignore all errors, “false” to

only ignore errors specified in the “toleratedMpiErrors” property

ii. toleratedMpiErrors – the exact error text from VistA to match to

ignore. If any other error text is found, then VistAWeb will display an

error to the user.

e. contextString – the default menu context to use for every user for all VistA

connections. However, if a permission attribute is set for a VistA site in the

sites file (VhaSites.xml), the permission attribute is used instead. In the

case of remote VistA systems, this same menu option will need to be specified in

the REMOTE APPLICATION file (see the BSE documentation for details).

3. Usage Stats

a. In the resources/context/daoContext.xml file, in the statsDao

object, you can change the following setting which will affect how VistAWeb

reports usage statistics:

i. SqlGlobalStats: you can specify which pages to exclude for the

global statistics.

ii. SqlSiteStats: you can specify which pages to exclude for the site

statistics.

4. Removing Reports From the Reports Menu

a. In the resources/context/mainContext.xml file, in the object with

attribute type="TreeTOC.aspx", you can comment out any report or

sections you don’t want to make available to the users.

5. Application Storage

a. In the resources/context/mainContext.xml file, in the

appStorage_connectionFactory object, you can define what kind of

database that VistAWeb uses as its backing data store. Read the notes in this file

for instructions on configurations.

6. Report Changes

November 2012 VistAWeb Technical Manual 35

 Version 16.1

a. In the resources/context/pageContext.xml file, you can specify how

a grid column behaves.

i. defaultSortedColumnIndex: the column which is the default

sorted column (0 based indexing).

ii. sortExpression: the column(s) used for sorting that particular

column when the user selects that column to be sorted. You must use the

column property names, separated by a comma. You may optionally

specify ascending (with the asc keyword) or descending (with the desc

keyword). Read through the pageContext.xml file for examples.

iii. headerTitle: these attributes contain what is displayed as the column

header text.

b. In the resources/context/pageContext.xml file, you can remove

columns from grid reports.

i. Anywhere you see an element with an attribute like
type="gov.va.med.vistaweb.ui.grid.GridColumn,emr.

cs", you can comment out this element and the column will no longer

show up in the report.

7. CDS 2 / HDR 2

a. CDS 2 is the interface to the HDR 2 data source. The configuration file for this

data source is called resources/xml/caipConfig_production.xml.

Parameters like “siteName”, “application”, and

“NDSconnection/URL” can be specified with this file.

b. The files in the resources/xml/xsl/cds folder are the schema files for the

data retrieved from CDS 2.1.*.

36 VistAWeb Technical Manual November 2012

 Version 16.1

Appendix E: System Information Reports

Information for the production VistAWeb servers can be found at the following links:

Web Server

http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=vaausnvwweb200

SQL Server

http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=VAAUSNVWSQL2

00

http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=vaausnvwweb200
http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=VAAUSNVWSQL200
http://vaww.sms.aac.va.gov/SMSReporting/MachDetails.asp?Machine=VAAUSNVWSQL200

November 2012 VistAWeb Technical Manual 37

 Version 16.1

Appendix F: RPCs Used by VistAWeb

DG SENSITIVE RECORD ACCESS

DG SENSITIVE RECORD BULLETIN

ORPRF GETFLG

ORPRF HASFLG

ORQOR DETAIL

ORQQAL DETAIL

ORQQCN DETAIL

ORQQCN LIST

ORQQCN MED RESULTS

ORQQPL PROBLEM LIST

ORQQVI1 GRID

ORVW FACLIST

ORWCIRN FACLIST

ORWCV DTLVST

ORWCV VST

ORWLR CUMULATIVE REPORT

ORWLRR INTERIM

ORWLRR MICRO

ORWORB FASTUSER

ORWPS COVER

ORWPS DETAIL

ORWPS MEDHIST

38 VistAWeb Technical Manual November 2012

 Version 16.1

ORWPT DIEDON

ORWPT FULLSSN

ORWPT ID INFO

ORWPT PTINQ

ORWPT SELECT

ORWPT1 PCDETAIL

ORWPT1 PRCARE

ORWRA IMAGING EXAMS1

ORWRP REPORT LISTS

ORWRP REPORT TEXT

ORWRP2 HS COMP FILES

ORWRP2 HS COMPONENT SUBS

ORWRP2 HS COMPONENTS

ORWRP2 HS FILE LOOKUP

ORWRP2 HS REPORT TEXT

ORWSR RPTLIST

ORWU NEWPERS

ORWU USERINFO

ORWU VERSRV

TIU DOCUMENTS BY CONTEXT

TIU GET LINKED PRF NOTES

TIU GET PRF TITLE

TIU GET RECORD TEXT

XUS AV CODE

November 2012 VistAWeb Technical Manual 39

 Version 16.1

XUS CVC

XUS INTRO MSG

XUS SET VISITOR

XUS SIGNON SETUP

XUS SIGNON SETUP

XWB CREATE CONTEXT

XWB GET VARIABLE VALUE

40 VistAWeb Technical Manual November 2012

 Version 16.1

Appendix G: Configuring a build to work on a
computer that doesn’t have Visual Studio 2010

To get a build to work on a computer that doesn’t have Visual Studio 2010 installed, follow

the solution that’s outlined in the blog:

http://blogs.msdn.com/b/webdevtools/archive/2010/05/26/visual-studio-2010-web-

deployment-projects-rtw-available-now.aspx.

Here are the steps to take in order for the build to work. Note, that “\\name” represents a

development computer where VS2010 is installed:

1. Install Visual Studio 2010 Web Deployment Project – RTW from

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24509.

2. Install Windows SDK 7 and .NET framework 4 from this link

http://msdn.microsoft.com/en-us/windows/bb980924

3. Copy \\Name\Program Files\Microsoft SDKs\Windows\v7.0A\bin\aspnet_merge.exe

to C:\Program Files\MSBuild\Microsoft\WebDeployment\v10.0\aspnet_merge.exe

4. Edit C:\Program

Files\MSBuild\Microsoft\WebDeployment\v10.0\Microsoft.WebDeployment.targets file

by adding two lines highlighted in yellow:

from:

 <!--**-->

 <!--Include the WPP targets file-->

 <Import Project="..\..\VisualStudio\v10.0\Web\Microsoft.Web.Publishing.targets"

Condition="$(_WDP_WPPExists)" />

 <!--**-->

to:

 <!--**-->

 <!--Include the WPP targets file-->

 <Import Project="..\..\VisualStudio\v10.0\Web\Microsoft.Web.Publishing.targets"

Condition="$(_WDP_WPPExists)" />

 <Import Project="..\..\VisualStudio\v10.0\Web\Microsoft.Web.Publishing.targets" />

 <Import

Project="..\..\VisualStudio\v10.0\WebApplications\Microsoft.WebApplication.targets" />

 <!--**-->

me

5. Copy \\Name\Program Files\MSBuild\Microsoft\VisualStudio\v10.0\Web and

\\Name\Program Files\MSBuild\Microsoft\VisualStudio\v10.0\WebApplications

directories to C:\Program Files\MSBuild\Microsoft\VisualStudio\v10.0.

http://blogs.msdn.com/b/webdevtools/archive/2010/05/26/visual-studio-2010-web-deployment-projects-rtw-available-now.aspx
http://blogs.msdn.com/b/webdevtools/archive/2010/05/26/visual-studio-2010-web-deployment-projects-rtw-available-now.aspx
file://name
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24509
http://msdn.microsoft.com/en-us/windows/bb980924
file://Vadim/Program%20Files/Microsoft%20SDKs/Windows/v7.0A/bin/aspnet_merge.exe
file://Name/Program
file://Name/Program

